Forcing Constructions and Countable Borel Equivalence Relations
نویسندگان
چکیده
We prove a number of results about countable Borel equivalence relations with forcing constructions and arguments. These results reveal hidden regularity properties of Borel complete sections on certain orbits. As consequences they imply the nonexistence of Borel complete sections with certain
منابع مشابه
2 6 M ar 2 01 5 FORCING CONSTRUCTIONS AND COUNTABLE BOREL EQUIVALENCE RELATIONS
We prove a number of results about countable Borel equivalence relations with forcing constructions and arguments. These results reveal hidden regularity properties of Borel complete sections on certain orbits. As consequences they imply the nonexistence of Borel complete sections with certain
متن کاملCountable abelian group actions and hyperfinite equivalence relations
An equivalence relation E on a standard Borel space is hyperfinite if E is the increasing union of countably many Borel equivalence relations En where all En-equivalence classs are finite. In this article we establish the following theorem: if a countable abelian group acts on a standard Borel space in a Borel manner then the orbit equivalence relation is hyperfinite. The proof uses constructio...
متن کاملSimultaneous Reducibility of Pairs of Borel Equivalence Relations
Let E ⊆ F and E′ ⊆ F ′ be Borel equivalence relations on the standard Borel spaces X and Y , respectively. The pair (E,F ) is simultaneously Borel reducible to the pair (E′, F ′) if there is a Borel function f : X → Y that is both a reduction from E to E′ and a reduction from F to F ′. Simultaneous Borel embeddings and isomorphisms are defined analogously. We classify all pairs E ⊆ F of smooth ...
متن کاملTreeable equivalence relations
There are continuum many ≤B-incomparable equivalence relations induced by a free, Borel action of a countable non-abelian free group – and hence, there are 20 many treeable countable Borel equivalence relations which are incomparable in the ordering of Borel reducibility
متن کاملPopa Superrigidity and countable Borel equivalence relations
We present some applications of Popa’s Superrigidity Theorem to the theory of countable Borel equivalence relations. In particular, we show that the universal countable Borel equivalence relation E∞ is not essentially free.
متن کامل